Dual-inverter Wire Drawing Machine
CHV130 series Frequency inverter
Operation manual

Notice:
Please use this manual together with “CHV Series Close Loop Vector Control Inverter Operation manual”.

SHENZHEN INVT ELECTRIC CO., LTD.
Chapter 1 Parameter Setting

Function of CHV130 series frequency inverter special for dual-inverter wire drawing machine. The following parameters are special for CHV130 series; other parameter setting is same with that of CHV100 series.

<table>
<thead>
<tr>
<th>Function Code</th>
<th>Name</th>
<th>Description</th>
<th>Setting range</th>
<th>Factory Setting</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0 Group: Basic Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0.00</td>
<td>Wire drawing machine type</td>
<td>0: Dual-inverter wire drawing machine 1~5: Reserved</td>
<td>0~5</td>
<td>0</td>
<td>●</td>
</tr>
<tr>
<td>P0.01</td>
<td>Speed control mode</td>
<td>0: Sensorless vector control 1: Vector control With PG 2: V/F control</td>
<td>0~2</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>P0.02</td>
<td>Run command source</td>
<td>0: Keypad (LED off) 1: Terminal (LED flickering) 2: Communication (LED on)</td>
<td>0~2</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>P0.03</td>
<td>Frequency A command source</td>
<td>0: Keypad 1: AI1 2: AI2 3: AI3 4: AI4 5: HDI1 6: HDI2 7: PID 8: Communication</td>
<td>0~8</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>P0.04</td>
<td>Frequency B command source</td>
<td>1: AI1 2: AI2 3: AI3 4: AI4 5: HDI1 6: HDI2 7: PID 8: Communication</td>
<td>1~8</td>
<td>1</td>
<td>○</td>
</tr>
<tr>
<td>P5 Group: Input Terminals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5.01</td>
<td>Input selection</td>
<td>0~0x3FF Notice: 0: always-open input 1: always-close input</td>
<td>0~0x3FF</td>
<td>0x000</td>
<td>○</td>
</tr>
<tr>
<td>P5.02</td>
<td>S1 Terminal function</td>
<td>0: Invalid 1: Forward 2: Reverse 3: 3-wire control 4: Jog forward 5: Jog reverse 6: Coast to stop</td>
<td>0~55</td>
<td>1</td>
<td>○</td>
</tr>
<tr>
<td>P5.03</td>
<td>S2 Terminal function</td>
<td>7: Reset fault 8: Pause running</td>
<td>0~55</td>
<td>4</td>
<td>○</td>
</tr>
<tr>
<td>P5.04</td>
<td>S3 Terminal function</td>
<td>8: Coast to stop</td>
<td>0~55</td>
<td>7</td>
<td>○</td>
</tr>
<tr>
<td>Function Code</td>
<td>Name</td>
<td>Description</td>
<td>Setting range</td>
<td>Factory Setting</td>
<td>Modify</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| P5.05 | S4 Terminal function | 9: External fault input
10: Reserved
11: Reserved
12: Reserved
13: Switch between A and B | 0~55 | 0 | |
| P5.06 | S5 Terminal function | 14: Switch between A and A+B
15: Switch between B and A+B
16: Reserved
17: Reserved
18: Reserved
19: Reserved
20: Reserved
21: ACC/DEC time selection 1
22: ACC/DEC time selection 2
23: Reserved
24: Reserved
25: Pause PID | 0~55 | 0 | |
| P5.07 | HDI1 terminal function| 26: Pause traverse operation
27: Reset traverse operation
28: Reset counter
29: Reset length
30: ACC/DEC ramp hold
31: Disable torque control
32: Winding diameter reset
33: Broken-line fault input
34: Reserved
35: Original winding diameter selection | 0~55 | 0 | |
| P5.08 | HDI2 terminal function| | | | |
| P5.09 | S6 Terminal function | | | | |
| P5.10 | S7 Terminal function | | | | |
| P5.11 | S8 Terminal function | | | | |

P6 Group: Output Terminals

<table>
<thead>
<tr>
<th>Function Code</th>
<th>Name</th>
<th>Description</th>
<th>Setting range</th>
<th>Factory Setting</th>
<th>Modify</th>
</tr>
</thead>
</table>
| P6.01 | Y1 output selection | 0: NO output
1: Run forward
2: Run reverse
3: Fault output | 0~40 | 1 | |
| P6.02 | Y2 output selection | 4: Motor overload
5: Inverter overload
6: FDT reached | 0~40 | 0 | |
| P6.03 | HD0 ON-OFF output selection | 7: Frequency reached
8: Zero speed running | 0~40 | 3 | |
<p>| P6.04 | Relay 1 output selection | 9: Preset count value reached | | | |
| P6.05 | Relay 2 output selection | | | | |</p>
<table>
<thead>
<tr>
<th>Function Code</th>
<th>Name</th>
<th>Description</th>
<th>Setting range</th>
<th>Factory Setting</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6.06</td>
<td>Relay 3 output selection</td>
<td>10: Specified count value reached
11: Length reached
12: Reserved
13: Running time reached
14: Upper frequency limit reached
15: Lower frequency limit reached
16: Ready
17: Reserved
18: Reserved
19: Motor running
20: Stop pulse output
21: Brake
22: Line-broken warning
23~40: Reserved</td>
<td>0~40</td>
<td>0</td>
<td>◯</td>
</tr>
<tr>
<td>P7.01</td>
<td>Parameter copy</td>
<td>0: Invalid
1: Upload parameters to LCD
2: Download parameters from LCD</td>
<td>0~2</td>
<td>0</td>
<td>◯</td>
</tr>
<tr>
<td>P7.02</td>
<td>QUICK/JOG function selection</td>
<td>0: Quick debugging mode
1: FDW/REV switching
2: Jog
3: Reserved</td>
<td>0~3</td>
<td>0</td>
<td>◯</td>
</tr>
<tr>
<td>P7.03</td>
<td>STOP/RST function selection</td>
<td>0: Valid when keypad control (P0.01=0)
1: Valid when keypad or terminal control (P0.01=0 or 1)
2: Valid when keypad or communication control (P0.01=0 or 2)
3: Always valid</td>
<td>0~3</td>
<td>0</td>
<td>◯</td>
</tr>
<tr>
<td>P7.04</td>
<td>Keypad display selection</td>
<td>0: Preferential to external keypad
1: Both display, only external key valid.
2: Both display, only local key valid.
3: Both display and key valid.</td>
<td>0~3</td>
<td>0</td>
<td>◯</td>
</tr>
<tr>
<td>Function Code</td>
<td>Name</td>
<td>Description</td>
<td>Setting range</td>
<td>Factory Setting</td>
<td>Modify</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| P7.05 | Running status display selection 1 | 0~0xFFFF
BIT0: Running frequency
BIT1: Reference frequency
BIT2: DC bus voltage
BIT3: Output voltage
BIT4: Output current
BIT5: Rotation speed
BIT6: Output power
BIT7: Output torque
BIT8: PID preset
BIT9: PID feedback
BIT10: Input terminal status
BIT11: Output terminal status
BIT12: AI1
BIT13: AI2
BIT14: AI3
BIT15: AI4 | 0~0xFFFF | 0x339F | ○ |
| P7.06 | Running status display selection 2 | BIT0: HDI1
BIT1: HDI2
BIT2: Setting length
BIT3: Actual length
BIT4: Actual counter value
BIT5: Running line speed
BIT6: Actual winding diameter value
BIT7~BIT15: Reserved | 0~0xFFFF | 0x006C | ○ |
| P7.07 | Stop status display selection | 1~0xFFFF
BIT0: Reference frequency
BIT1: DC bus voltage
BIT2: Input terminal status
BIT3: Output terminal status
BIT4: PID preset
BIT5: PID feedback
BIT6: AI1
BIT7: AI2
BIT8: AI3
BIT9: AI4
BIT10: HDI1
BIT11: HDI2
BIT12: Setting length
BIT13: Actual length
BIT14: Reserved
BIT15: Reserved | 1~0xFFFF | 0x30FF | ○ |

P8 Group: Enhanced Function

<table>
<thead>
<tr>
<th>Function Code</th>
<th>Name</th>
<th>Setting range</th>
<th>Factory Setting</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8.19</td>
<td>Preset length</td>
<td>1~650.00Km</td>
<td>1~650.00</td>
<td>100.00Km</td>
</tr>
<tr>
<td>P8.20</td>
<td>Actual length</td>
<td>0~650.00Km</td>
<td>0~650.00</td>
<td>0.00Km</td>
</tr>
<tr>
<td>Function Code</td>
<td>Name</td>
<td>Description</td>
<td>Setting range</td>
<td>Factory Setting</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>P8.21</td>
<td>Number of pulse per 10 m</td>
<td>0.1~6500.0</td>
<td>0.1~6500.0</td>
<td>100.0</td>
</tr>
<tr>
<td>P8.22</td>
<td>Preset count value</td>
<td>1~65535</td>
<td>1~65535</td>
<td>1000</td>
</tr>
<tr>
<td>P8.23</td>
<td>Specified count value</td>
<td>1~65535</td>
<td>1~65535</td>
<td>1000</td>
</tr>
</tbody>
</table>

P9 Group: PID control

<p>| P9.00 | PID preset source selection | 0: keypad (P9.01) 1: AI1 2: AI2 3: AI3 4: AI4 5: HDI1 6: HDI2 7: Communication 8: Reserved | 08 | 0 | ○ |
| P9.01 | Keypad PID preset | 0.0%100.0% | 0.0100.0 | 0.0% | ○ |
| P9.02 | PID feedback source selection | 0: AI1 1: AI2 2: AI3 3: AI4 4: AI1-AI2 5: AI3-AI4 6: HDI1 7: HDI2 8: HDI1-HDI2 9: Communication | 09 | 0 | ○ |
| P9.03 | PID output characteristics | 0: Positive 1: Negative | 01 | 0 | ○ |
| P9.04 | Proportional gain (Kp1) | 0.00100.0 | 0.00100.0 | 0.05 | ○ |
| P9.05 | Integral time (Ti1) | 0.01100.00s | 0.01100.00 | 0.30s | ○ |
| P9.06 | Differential time (Td1) | 0.0010.00s | 0.0010.00 | 0.00s | ○ |
| P9.07 | Proportional gain (Kp2) | 0.00100.0 | 0.00100.0 | 0.30 | ○ |
| P9.08 | Integral time (Ti1) | 0.01100.00s | 0.01100.00 | 0.10s | ○ |
| P9.09 | Differential time (Td1) | 0.0010.00 | 0.0010.00 | 0.00s | ○ |
| P9.10 | PID parameter reference selection | 0: PID parameter 1 1: According to linear speed 2: According to running frequency 3: According to winding diameter | 03 | 0 | ○ |
| P9.11 | Sampling cycle (T) | 0.01100.00s | 0.01100.00 | 0.50s | ○ |
| P9.12 | Bias limit | 0.0100.0% | 0.0100.0 | 0.0% | ○ |</p>
<table>
<thead>
<tr>
<th>Function Code</th>
<th>Name</th>
<th>Description</th>
<th>Setting range</th>
<th>Factory Setting</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9.13</td>
<td>PID output filter time</td>
<td>0.00~10.00s</td>
<td>0.00~10.00</td>
<td>0.00</td>
<td>○</td>
</tr>
<tr>
<td>P9.14</td>
<td>PID threshold of upper limit</td>
<td>0.0~100.0%</td>
<td>0.0~100.0</td>
<td>20.0%</td>
<td>○</td>
</tr>
<tr>
<td>P9.15</td>
<td>gain</td>
<td>-50.0%~50.0%</td>
<td>-50.0%~50.0%</td>
<td>0.0%</td>
<td>○</td>
</tr>
<tr>
<td>PA Group: Special parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA.00</td>
<td>Lost detecting method</td>
<td>0: No detect 1: On-off detect 2: Feedback detect</td>
<td>0~2</td>
<td>1</td>
<td>○</td>
</tr>
<tr>
<td>PA.01</td>
<td>Minimum running frequency of detection</td>
<td>0.00~30.00HZ</td>
<td>0.00~30.00</td>
<td>1.00HZ</td>
<td>○</td>
</tr>
<tr>
<td>PA.02</td>
<td>Delay time of on-off detecting</td>
<td>0.0~100.0s</td>
<td>0.0~100.0</td>
<td>3.0s</td>
<td>○</td>
</tr>
<tr>
<td>PA.03</td>
<td>Feedback lost detecting value</td>
<td>0.0~100.0%</td>
<td>0.0~100.0</td>
<td>0.0%</td>
<td>○</td>
</tr>
<tr>
<td>PA.04</td>
<td>Feedback lost detecting time</td>
<td>0.0~100.0s</td>
<td>0.0~100.0</td>
<td>3.0s</td>
<td>○</td>
</tr>
<tr>
<td>PA.05</td>
<td>Output frequency of decelerating to stop</td>
<td>0.00~50.00HZ</td>
<td>0.00~50.00</td>
<td>1.00HZ</td>
<td>○</td>
</tr>
<tr>
<td>PA.06</td>
<td>Durative time of stop signal</td>
<td>0.1~50.0s</td>
<td>0.1~50.0</td>
<td>3.0s</td>
<td>○</td>
</tr>
<tr>
<td>PA.07</td>
<td>Parameter setting selection</td>
<td>0: Default 1: Standard master parameter 2: Standard winding parameter</td>
<td>0~2</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>PA.08</td>
<td>FDT detection output selection</td>
<td>0: Invalid when jog 1: Valid when jog</td>
<td>0~1</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>PA.09</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>PA.10</td>
<td>Length reaching selection</td>
<td>0: No action, Master machine decelerate to stop 1: Action</td>
<td>0~1</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>PA.11</td>
<td>Time of length reaching selection</td>
<td>0.0~20.0.s</td>
<td>0.0~20.0</td>
<td>1.0s</td>
<td>○</td>
</tr>
<tr>
<td>PA.12</td>
<td>Upper frequency limit selection</td>
<td></td>
<td>0~7</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>PA.13</td>
<td>Linear speed display mode selection</td>
<td>0: Refer to synchronized speed of master (for master display) 1: Refer to external input signal (for winding display)</td>
<td>0~1</td>
<td>0</td>
<td>○</td>
</tr>
<tr>
<td>Function Code</td>
<td>Name</td>
<td>Description</td>
<td>Setting range</td>
<td>Factory Setting</td>
<td>Modify</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>------------------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>PA.14</td>
<td>Linear speed parameter</td>
<td>0.001~10.000</td>
<td>0.001~10.000</td>
<td>1.000</td>
<td>○</td>
</tr>
<tr>
<td>PA.15</td>
<td>Linear speed input source</td>
<td>0: No input
1: AI1 setting
2: AI2 setting
3: AI3 setting
4: AI4 setting
5: HDI1 setting
6: HDI2 setting
7: Communication</td>
<td>0~7</td>
<td>1</td>
<td>○</td>
</tr>
<tr>
<td>PA.16</td>
<td>Maximum speed</td>
<td>0.1~6000.0m/Min</td>
<td>0.1~6000.0</td>
<td>2000.0m/Min</td>
<td>○</td>
</tr>
<tr>
<td>PA.17</td>
<td>Minimum linear speed</td>
<td>0.1~P8.26</td>
<td>0.1~P8.26</td>
<td>0.0m/Min</td>
<td>○</td>
</tr>
<tr>
<td>PA.18</td>
<td>Transmission ratio</td>
<td>0.01~400.00</td>
<td>0.01~400.00</td>
<td>1.00</td>
<td>○</td>
</tr>
<tr>
<td>PA.19</td>
<td>External diameter of winding</td>
<td>1~5000mm</td>
<td>1~5000</td>
<td>1000mm</td>
<td>○</td>
</tr>
<tr>
<td>PA.20</td>
<td>Internal diameter 1 of winding</td>
<td>1~3000mm</td>
<td>1~3000</td>
<td>200mm</td>
<td>○</td>
</tr>
<tr>
<td>PA.21</td>
<td>Internal diameter 1 of winding</td>
<td>1~3000mm</td>
<td>1~3000</td>
<td>150mm</td>
<td>○</td>
</tr>
<tr>
<td>PA.22</td>
<td>Winding diameter filter time</td>
<td>0.0~200.0s</td>
<td>0.0~200.0</td>
<td>5.0s</td>
<td>○</td>
</tr>
</tbody>
</table>
Chapter 2 Wiring diagram

1. Control wiring diagram of inverter without digital readout
SB0: Start button
SB1: Stop button
SB2: Urgently stop button
2. Control wiring diagram of inverter with digital readout
Chapter 3

Reference parameters setting of CHV130 series frequency inverter:

1. Parameters setting without digital readout (just for reference):

Master Motor Inverter parameter (CHV130-011G-4):

(1) P0.01=0; Sensorless vector control
(2) P0.02=1; Terminal (LED flickering)
(3) P0.03=1; AI1
(4) P0.07=70.00; Maximum frequency 70Hz
(5) P0.08=70.00; Upper frequency limit 70Hz
(6) P0.11=80.00; Acceleration time 0 (80s) (According to the actual situation)
(7) P0.12=80.00; Deceleration time 0 (80s) (According to the actual situation)
(8) P5.02=1; S1 is the forward terminal
(9) P5.03=4; S2 is the forward jog terminal
(10) P5.04=6; S3 is Coast to stop
(11) P5.05=7; S4 is reset fault (According to the actual situation)
(12) P5.16=0.0%; According to the actual situation
(13) P5.19=1.00S; According to the actual situation
(14) P6.04=3; Relay 1 output is fault output
(15) P6.05=21; Relay 2 output is brake
(16) PA.05=4.00Hz; Output frequency of decelerating to stop, According to the actual situation
(17) PA.06=5.0s; Output time of brake, According to the actual situation

Winding inverter parameters (CHV130-004G):

(1) P0.01=0; Sensorless vector control
(2) P0.02=1; Terminal (LED flickering)
(3) P0.03=1; AI1
(4) P0.04=7; PID, Assistant frequency setting
(5) P0.06=2; A+B
(6) P0.07=70.00; Maximum frequency 70Hz
(7) P0.08=70.00; Upper frequency limit 70Hz
(8) P1.08=1; Coast to stop
(9) P0.11=0.50; Acceleration time 0 (0.50s) (According to the actual situation)
(10) P0.12=0.50; Deceleration time 0 (0.50s) (According to the actual situation)
(11) P5.02 = 1; S1 is forward terminal
(12) P5.03 = 33; S2 is the lost fault input
(13) P5.04 = 7; S3 is fault reset
(14) P5.15, P5.16: According to the actual situation (these two parameters will influence the dragging speed of pole).
 If need the dragging speed to be lower, you can set P5.15 to be bigger than 0, P5.16 to be 0. Then more big P5.15, more low of drag speed will be. But please notice that P5.15 should be no bigger than 1.00.
 On the contrary, need the drag speed to be higher, can set P5.15 to be 0, P5.16 to be bigger than 0. Then more big P5.16, more high of drag speed will be. But please notice that P5.16 should be no bigger than 5%.
(15) P5.19 = 0.5s; According to the actual situation
(16) P5.20 = 1.9V; According to the actual situation (The relative voltage of the lowest position of pole)
(17) P5.22 = 8.1V; According to the actual situation (The relative voltage of the highest position of pole)
(18) P5.24 = 0.02s; According to the actual situation (Filter time of pole feedback)
(19) P6.04 = 3; Relay output RO1 is fault output
(20) P6.05 = 6; Relay output RO2 is FDT output (control wiring motor)
(21) P8.25 = 2.00Hz;
(22) P8.26 = 0.0%;
(23) P9.01 = 50.0%; PID preset (the feedback value when the pole is at the middle position is the fiducially)
(24) P9.02 = 1; AI2 is the feedback
(25) P9.04 = 0.05; According to the actual situation, 0.05~0.08
(26) P9.05 = 25.00; According to the actual situation, 15.00~40.00
(27) P9.07; According to the actual situation, factory setting
(28) P9.08; According to the actual situation, factory setting
(29) P9.10; According to the actual situation, factory setting
(30) P9.11 = 0.01;
(31) P9.14 = 25%; According to the actual situation, 25%~80%.
 If winding is not better, can set this parameter to be bigger
(32) PA.00 = 1; Lost detection method, on-off detect PA.01 = 10.00Hz:
(33) PA.02 = 0s; Delay time of lost detection
(34) PA.18; According to the actual situation, normally no need set
(35) PA.19; According to the actual situation, normally no need set
(36) PA.20; According to the actual situation, normally no need set
(37) PA.22; According to the actual situation, normally no need set
2. Parameters setting with digital readout (just for reference):

Master Motor Inverter parameter (CHV130-011G-4):

(18) P0.01=0: Sensorless vector control
(19) P0.02=1: Terminal (LED flickering)
(20) P0.03=1: AI1
(21) P0.07=70.00: Maximum frequency 70Hz
(22) P0.08=70.00: Upper frequency limit 70Hz
(23) P0.11=80.00: Acceleration time 0 (80s) (According to the actual situation)
(24) P0.12=80.00: Deceleration time 0 (80s) (According to the actual situation)
(25) P5.02=1: S1 is the forward terminal
(26) P5.03=4: S2 is the forward jog terminal
(27) P5.04=6: S3 is Coast to stop
(28) P5.05=7: S4 is reset fault (According to the actual situation)
(29) P5.16=0.0%: According to the actual situation
(30) P5.19=1.00S: According to the actual situation
(31) P6.04=3: Relay 1 output is fault output
(32) P6.05=21: Relay 2 output is brake
(33) PA.05=4.00Hz: Output frequency of decelerating to stop, According to the actual situation
(34) PA.06=5.0s: Output time of brake, According to the actual situation
(35) PA.13=0: Refer to synchronized speed of master
(36) PA.14: Set the value according to the actual situation

Notice: The display interface has to be switched to **actual linear speed**, can be shifted by [SHIFT].

Winding inverter parameters (CHV130-004G):

(1) P0.01=0: Sensorless vector control
(2) P0.02=1: Terminal (LED flickering)
(3) P0.03=1: AI1
(4) P0.04=7: PID, Assistant frequency setting
(5) P0.06=2: A+B
(6) P0.07=70.00: Maximum frequency 70Hz
(7) P0.08=70.00: Upper frequency limit 70Hz
(8) P1.08=1: Coast to stop
(9) P0.11=0.50: Acceleration time 0 (0.50s) (According to the actual situation)
(10) P0.12=0.50: Deceleration time 0 (0.50s) (According to the actual situation)
(11) P5.02=1: S1 is forward terminal
(12) P5.03=33: S2 is the lost fault input
(13) P5.04=7: S3 is fault reset
(14) P5.05=29: S4 is length reset
(15) P5.15, P5.16: According to the actual situation (these two parameters will influence the dragging speed of pole).
 If need the dragging speed to be lower, you can set P5.15 to be bigger than 0, P5.16 to be 0. Then more big P5.15, more low of drag speed will be. But please notice that P5.15 should be no bigger than 1.00.
 On the contrary, need the drag speed to be higher, can set P5.15 to be 0, P5.16 to be bigger than 0. Then more big P5.16, more high of drag speed will be. But please notice that P5.16 should be no bigger than 5%.
(16) P5.19=0.5s: According to the actual situation
(17) P5.20=1.9V: According to the actual situation (The relative voltage of the lowest position of pole)
(18) P5.22=8.1V: According to the actual situation (The relative voltage of the highest position of pole)
(19) P5.24=0.02s: According to the actual situation (Filter time of pole feedback)
(20) P5.35=2: Length input (HDI1 is length high speed pulse input)
(21) P6.01=11: Length reached (Valid when PA.10=1)
(22) P6.04=3: Relay output RO1 is fault output
(23) P6.05=6: Relay output RO2 is FDT output (control wiring motor)
(24) P8.19=20000: According to the actual situation (the unit is 10m, the maximum value is 650Km)
(25) P8.21=80: According to the actual situation (the unit is pulse value of every 10m)
(26) P8.25=2.00Hz;
(27) P8.26=0.0%;
(28) P9.01=50.0%: PID preset (the feedback value when the pole is at the middle position is the fiducially)
(29) P9.02=1: AI2 is the feedback
(30) P9.04=0.05: According to the actual situation, 0.05~0.08
(31) P9.05=25.00: According to the actual situation, 15.00~40.00
(32) P9.07: According to the actual situation, factory setting
(33) P9.08: According to the actual situation, factory setting
(34) P9.10: According to the actual situation, factory setting
(35) P9.11=0.01:
(36) P9.14=25%: According to the actual situation, 25%~80%.
 If winding is not better, can set this parameter to be bigger
(37) PA.00=1: Lost detection method, on-off detect
(38) PA.01=10.00Hz;
(39) PA.02=0s: Delay time of lost detection
(40) PA.10=0: When length reached, motor will coast to stop, and the
length reached output will be invalid, delay time of reached will be also invalid.
When set to be 1, length reached is valid; the output time will be valid
(41) PA.11=3 s: According to the actual situation (valid when PA.10=1)
(42) PA.18: According to the actual situation, normally no need set
(43) PA.19: According to the actual situation, normally no need set
(44) PA.20: According to the actual situation, normally no need set
(45) PA.22: According to the actual situation, normally no need set

Notice: The display interface has to be switched to actual linear speed, can be shifted by SHIFT.