STARVERT iP5

An optimum solution for the VT application control and energy savings
$5.5 \sim 30 \mathrm{~kW}(7.5 \sim 40 \mathrm{HP}) 3$ 3hase 200~230Volts 5.5~30kW(7.5~40HP) 3Phase 380~460Volts

LG Industrial Systems

Building up a clean and productive industrial society became possible by offering our superb Total-Solution. LGIS is the leader of the industrial Electric and Automation business.

The Starvert iP5 series is optimally designed for the use of the VT(Fan \& Pump) applications and the energy savings. Its powerful performance, easy-to-use, and highly considered safety are the core product development spirit of LG Starvert iP5 series.

Contents	4	Special features
8	Models	
9	Basic specifications	
10	Specifications	
11	Wiring	
12	Main circuit terminals	
13	Control circuit terminals	
14	Loader	
15	LCD Loader and shifts between the groups \& codes	
16	Shifts between the groups and segment loader	
17	Function code table	
25	Peripheral devices	
26	Dimension	
28	Braking unit	
29	Installation notice	
31	Memo	

RTMPNEBANB

The powerful sensorless vector control and the optimized functions for the VT applications fully satisfy our customers' needs.

The iP5 series, specifically designed for VT applications, provide various distinctive functions such as Auto tuning, PID control, Flying-Start, Sleep and -10~+10V inputs.

The optimum control performance for Fan \& Pump

STARVERT iP5 Series

LG STARVERT iP5 for Fan \& Pump exclusive use inverter guarantees its powerful performances and optimum control features

PID control
PID control can be defined as a tool of maintaining the volumes of controlled objects, such as the oil volume, temperature, pressure degree etc, in a certain and precise level by operating the Proportion and Integral processes of the inverter with detected signal values.

Dual direction loader
Reducing the default parameters by 37% enables dual direction shifts between the groups and easy searching and operation of various functions.

High performance μ-processor
Adoption of the high performance digital signal process chip enhances the efficiencies of process speeds,flexibility, stability and the internal noise reduction functions.

Multi-function input terminal setup
Selective use of needed functions and a maximum 16 steps of multi-step speed controlling became possible.

To make an optimum performance VT application exclusive inverter, our iP5 series enhances its safety and defendability by stably controlling the loads fluctuations during long time operation.

Our Fan \& Pump application exclusive inverter STARVERT iP5 series improves the process speeds, flexibility, defendability and internal noise by adopting the high performance digital signal processor, STARVERT iP5 series basically provides the V/F control operation and shows a remarkably improved sensorless vector control mode which used to generate motor speeds change problems that occur from the load changes and also the newly adopted Sleep function, among LG Starvert series, boosts the energy saving function.

The external NTC input and the flying start provide much more improved protection functions and the built-in PID and Auto tuning functions bring the optimal control features for airflow and oil volumes.

Dynamic braking
Speed reduction generates the regenerative voltages which are burnt down as thermal energy at the $2 n d$ resistor of motor and this procedure generates the braking power.

Note1) Do not use in case of unasval thermal generation.

Built-in RS485 communication

The built-in RS485 communication enables the long-distance communication controlling between the PLC and PC and the inverter.

Sensorless vector control

Our sensorless vector control method improves the torque inefficiency at low speeds and the motor speed variations according to the application changes.

Flying-start

As one of the Fan exclusive functions, it protects inverter from trips when the Fan rotates reversely due to external influences.

[^0]
The best of the best choice for Fan \& Pump exclusive use.

STARVERT iP5 Series

Auto energy saving

Depending on the application conditions, at normal speed operation, iP5 searches its parameter setting values and this enables to perform the energy saving function. The auto energy saving function guarantees an optimum energy use efficiency in the applications like Fan, Pump and HVAC where require a constant operation speed and long-time operation.

Oil Volume, Wind volume, Speed (100\%)

MMC (Multi motor control)

In case the oil volume or its pressure degree is lower or higher than its usual level, controlling those degrees through the main motor may not be strong enough considering its capacity, then operating a sub-motor with the main motor enables to maintain those degrees in a definite level. (Controlling maximum 4 sub-motors is possible with one main motor)

Enhanced energy efficiency \& Fan and Pump exclusive functions

Newly adopted auto energy saving function of iP5 solved the energy shortage problems of previous inverters. More good news of iP5 is the realizations of speed search improvement, MMC and sleep functions.
These functions help to make iP5 as a optimum solution of VT applications such as Fans and Pumps.

Improved speed search

The speed search function basically works by controlling the output voltage and frequency in order not to give any unusual impact to the inverter and this allows proper rotation of the motor according as users' needs under unexpected situations such as instantaneous power failure.
The speed searching of inverter was performed controlling the output voltages and frequencies in order, yet iP5 controls those factors simultaneously which results in a prompt response and bi-directional speed search becomes possible.

Sleep

The " Sleep" function can be defined as one of the energy saving functions. When the flow demand is low if the inverter operates during sleep delay time, at below fixed sleep frequency, it stops the motor so that the consuming energy is saved. However, the control and monitoring functions are being operated during sleep and the "Wake-Up" function is initiated in case the real value of control volume is dropped below the wake-up level.

Note) The "Sleep" function is not operated if the sleep delay time is set to "0"

Basic information

Motor rating	200V class	400V class
5.5kW (7.5HP)	SV055iP5-2NU	SV055iP5-4NU
7.5kW (10HP)	SV075iP5-2NU	SV075iP5-4NU
11kW (15HP)	SV110iP5-2NU	SV110iP5-4NU
15kW (20HP)	SV150iP5-2NU	SV150iP5-4NU
18.5kW (25HP)	SV185iP5-2NU	SV185iP5-4NU
22kW (30HP)	SV220iP5-2NU	SV220iP5-4NU
30kW (40HP)	SV300iP5-2NU	SV300iP5-4NU

Basic specification

- 200V class

Type SV $\square \square \square$ iP5-2		055	075	110	150	185	220	300
Maximum Note1) motor rating	(HP)	7.5	10	15	20	25	30	40
	(kW)	5.5	7.5	11	15	18.5	22	30
Output rating	Capacity Note2) (kVA)	9.1	12.2	17.5	22.9	28.2	33.5	45
	Rated current (A)	24	32	46	60	74	88	115
	Output frequency	$0 \sim 120 \mathrm{~Hz}$						
	Output voltage	200~230V						
Input rating	Voltage	$3 \varnothing 200 \sim 230 \mathrm{~V}(-15 \% \sim+10 \%)$ Note3)						
	Frequency	$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$						
Weight (kg)		4.9	7.5	7.7	14.3	19.4	20	20

400 V class

Type SV $\square \square \square$ iP5-4		055	075	110	150	185	220	300
Maximum Note1) motor rating	(HP)	7.5	10	15	20	25	30	40
	(kW)	5.5	7.5	11	15	18.5	22	30
Output rating	Capacity Note2) (kVA)	9.1	12.2	18.3	22.9	29.7	34.3	45
	Rated current (A)	12	16	24	30	39	45	61
	Output frequency	$0 \sim 120 \mathrm{~Hz}$						
	Output voltage	380~480V						
Input rating	Voltage	$3 \varnothing 380 \sim 480 \mathrm{~V}(-15 \% \sim+10 \%)$ Note3)						
	Frequency	$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$						
Weight	(kg)	4.9	7.5	7.7	14.4	20	20	20

Note1) Indicates the maximum applicable capacity when using 4 pole LG motor
Note2) Rate capacity ($\sqrt{ } 3 \times \mathrm{V} \times 1$) is based on 220 V for 200 V class and 440 V for 400 V class.
Note3) Maximum output voltage will not be greater than the input voltage. Output voltage less than the input voltage may be programmed.

Specification

Common specification

Regenerative braking torque	Maximum braking Time/Rate	20\%Continuous Note1)
Cooling		Option(braking unit, braking resistor)
Protection		Forced cooling

Control

Control type	V/F, Slip compensation, Sensorless vector control
Frequency setting resolution	Digital: $0.01 \mathrm{~Hz}($ below 100 Hz$)$,). 1 Hz (over 100 Hz$)$
	Analog: $0.01 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Frequency accuracy	Digital: 0.01% of maximum output frequency
V/F rate	Analog: 0.1% of maximum output frequency
Cverload capacity	Linear. Squared pattern, User V/F
Torque boost	$110 \% / 1$ minute, $120 \% / 1$ minute \quad Note2)

Operation

Type		Key/Terminal/Communication operation
Frequency Setting		Analog:0~10V/-10V~10V/4~20mA/Pulse Digital:Loader
Input signal	Start signal	Forward, Reverse
	Multi-step	Maximum 16 steps(Multi-function terminal)
	Multi-step Acc/Decel	$0.1 \sim 6,000$ Seconds, Up to 4 types can be set and selected for each setting (use multi-function terminal)
	Acc/Decl pattern	Selectable among Linear, U and S shapes.
	Emergency stop	Momentary output blocking
	JOG	Jog operation
Output signal	Faultreset	Trip status is removed when protection function is active
	Operating status	Frequency detection level, Overload alarm, Stalling, Over voltage, Under voltage, Inverter overheating, Running,Stopping, Constant speed running, Inverter By-pass, Speed searching
	Fault output	Contact output(30A, 30C, 30B)-AC250V 1A, DC30V 1A
	Indicator	Choose 2 from output frequency, Output current, Output voltage, DC voltage, Output torque (Output voltage: $0 \sim 10 \mathrm{~V}$)
Operationfunction		DC Braking, Frequency limit, Frequency jump, Second function, compensation, Reverse rotation prevention, Auto restart, pass, Auto-Tuning, PID control

Protection

		Over voltage, Under voltage, Over current, Ground fault, Inverter overheating, Motor overheating, Output phase loss, Overload protection, External fault1,2 Communication error, Loss of speed command, Hardware fault, Option fault etc.
Inverter trip	Stall prevention, Overload alarm, NTC fault	
Inverter alarm	Celow 15 msec	Continuos operation, Above 15msec: Auto restart active failure
Momentary power failure	Operation information	Output frequency, Output current, Output voltage, Frequency value setting, Operating speed, DC voltage

Environment

Ambient temperature	$-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$
Ambienthumidity	Less than 90% RHM Max (non-condensing)
Altitude-vibration	Below $1,000 \mathrm{~m}$ or $3,300 \mathrm{ft}$. Below $59 \mathrm{~m} / \mathrm{s}^{2}(=0.6 \mathrm{~g})$
Application site	No corrosive gas, Combustible gas, Oil mist or dust

Note1) About 20\% of regenerative braking torque means the deceleration stopping average braking torque of motor loss
Note2) The overload capacity $120 \% / 1$ minute bases on $25^{\circ} \mathrm{C}$ of ambient temperature

Wiring

■ 5.5 ~ $30 \mathrm{~kW}(200 \mathrm{~V} / 400 \mathrm{~V})$

Control circuit terminal

- Control circuit terminal

Type		Symbol	Name	Description
Input signal	Starting contact function selection	M1,M2, M3	Multi-function input 1, 2, 3	Used for multi-function input terminal. (Factory default is set to "Multi-step frequency 1,2,3")
		FX(M7)	Forward run	Forward run/stop terminals by ON/OFF operations.
		RX(M8)	Reverse run	Reverse run/stop terminals by ON/OFF operations.
		JOG(M6)	Jog frequency reference	Runs at jog frequency when the jog signal is ON . The direction is set by the FX(or RX) signal.
		$\begin{array}{r} \text { Note) } \\ \text { BX(M5) } \end{array}$	Emergency stop	When the BX signal is ON the output of the inverter is turned off. When motor uses an electrical brake to stop, $B X$ is used to turn off the output signal. When $B X$ signal is off(Not turned off by latching) and FX signal (or RX signal) is ON , motor continues to run.
		RST(M4)	Fault reset	Used for fault reset
		CM	Sequence common	Commonterminal for NPN contact inputs
		24	Sequence common	Commonterminal for PNP contact inputs
	Analog frequency setting	V+, V-	Frequency setting power $(+12 \mathrm{~V},-12 \mathrm{~V})$	Used as power for analog frequency setting. Maximum output:+12V, 100mA,-12V, 100mA
		V1	Frequency reference (Voltage)	Used for DC $0-10 \mathrm{~V}$ or -10~10V input frequency reference input resistance is 20 Kl
		I	Frequency reference (Current)	Used for 4-20mA input frequency reference input resistance is 250 Kl
		$A 0, B 0$	Frequency setting(Pulse)	Used for pulse input frequency reference
		5G	Frequency setting commonterminal	Common terminal for analog frequency reference signal and FM(for monitoring)
	Built-intype RS 485 terminal	$C+, C-$	RS 485 signal. High and Low	RS485 Signal
		CM	RS 485 common	
Output signal	Voltage	S0, S1	For external monitoring	Outputs one of the followings: Output frequency, Output current, Output voltage, DC link voltage. Default is set to output frequency. Maximum output voltage and output current are $0-12 \mathrm{~V}$ and $1 \mathrm{~mA}, 500 \mathrm{~Hz}$.
	Contact	3A, 3C, 3B	Fault contact output	Activates when protective function is operating. AC250V, 1 A orless; DC 30V, 1 A orless. Fault:30A-30C closed (30B-30C open) Normal: 30B-30C closed (30A-30C open)
		A1~4, C1~4	Multi-function output relay	Use after defining multi-function output terminal. AC $250 \mathrm{~V}, 1$ A or less; DC30V, 1 A orless.

[^1]

- LED 7-segment loader

Parameter use instruction

Shift to the code you move to

$01 \quad \\| 10.0 \mathrm{sec}$

Press (PROG) key then the setting mode appears

$\begin{array}{c}\text { DRV Acc. } \\ 01 \\ 01.0 s e c \\ 0\end{array}$
Move the cursor
by using the
(SHIFT/ESC)

4	
$\begin{array}{\|lr\|} \hline \text { DRV } & \text { Acc. time } \\ 01 & 15.0 \mathrm{sec} \\ \hline \end{array}$	$\begin{aligned} & \text { DRV }>\text { Acc. time } \\ & 01 \quad 15.0 \mathrm{sec} \end{aligned}$
Data value change by using the UP and down keys	Save the changed data value by the (ENT) key

Shifts between each group/each code by LCD loader

Drive group [DRV]

Note1) Speed unit is changed from (Hz) to (\%) when DRV-16 is set to (Rpm)
Note2) DRV-17 appears by setting the parameter as (Int485) at DRV-04
Note3) DRV-18 appears by setting the parameter as (main drv) at IO-20

* These hiding codes are only displayed in case of setting those related codes.

- FU1 Group [FU1]

	Code	Description	Keypad display		Setting range		Factory default	Adj.during run
			LCD	7-segment	LCD	7-segment		
	FU1-00	Jump to desired code\#	Jump code	Not displayed	1 to 74	Not available	1	Yes
	FU1-01	Run prevention	Run Prev.	01	None Forward Prev Reverse Prev	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	None	No
	FU1-02	Acceleration pattern	Acc. pattern	02	Linear S-curve U-curve	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	Linear	No
	FU1-03	Deceleration pattern	Dec. pattern	03	Linear S-curve U-curve	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	Linear	No
Note4)	* FU1-04	Start side for S-curve Accel/Decel pattern	Start Curve	04	0to 100 [\%]		50\%	No
	* FU1-05	End side for S-curve Accel/Decel pattern	End Curve	05	0to 100 [\%]		50\%	No

[^2]※ These hiding codes are only displayed in case of setting those related codes.

FU1 group [FU1]

	Code	Description	Keypad display		Setting range		Factorydefault	Adj.during run
			LCD	7-segment	LCD	7-segment		
	FU1-20	Startmode	Startmode	20	Accel DC-start Flying start	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	Accel	No
Note5)	* FU1-21	Starting DCinjection braking time	DcSttime	21	0 to 60 [sec]		0.0 [sec]	No
	FU1-22	Starting DCinjection braking voltage	DCStvalue	22	Oto 150[\%]		$50[\%]$	No
	FU1-23	Stop mode	Stop mode	23	Decel DC-brake Free-run	$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	Decel	No
Note6)	* FU1-24	DCinjection braking on-delay time	DcBlktime	24	0 to 60 [sec]		0.1 [sec]	No
	* FU1-25	DCinjection braking frequency	DcBrfreq	25	0.1 to $60[\mathrm{~Hz}]$		$5.00[\mathrm{~Hz}]$	No
	* FU1-26	DCinjection braking time	DcBrtime	26	0 to 60 [sec$]$		1.0 [sec]	No
	* FU1-27	DCinjection braking voltage	DcBrvalue	27	Oto 200 [\%]		50 [\%]	No
	FU1-28	Dynamic braking	Dynamic B	28	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
	FU1-30	Maximumfrequency	Maxfreq	30	40 to $120[\mathrm{~Hz}]$		$60.00[\mathrm{~Hz}]$	No
	FU1-31	Basefrequency	Basefreq	31	30 to FU1-30		$60.00[\mathrm{~Hz}]$	No
	FU1-32	Starting frequency	Startfreq	32	0.01 to 10 [Hz]		$0.50[\mathrm{~Hz}]$	No
	FU1-33	Frequency limit selection	Freq limit	33	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
Note7)	* FU1-34	Low limit frequency	F-limit Lo	34	Oto FU1-35		$0.50[\mathrm{~Hz}]$	Yes
	* FU1-35	High limitfrequency	F-limit Hi	35	FU1-34to FUl-30		$60.00[\mathrm{~Hz}]$	No
	FU1-40	Volts/Hz pattern	V/F pattern	40	Linear Square User V/F	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	Linear	No
Note8)	* FU1-41	User V/F-frequency 1	Userfreq 1	41	0 to FU1-30		$15.00[\mathrm{~Hz}]$	No
	* FU1-42	UserV/F-voltage 1	Uservolt 1	42	Oto 100 [\%]		$25[\%]$	No
	* FU1-43	UserV/F-frequency 2	Userfreq2	43	0to FU1-30		$30.00[\mathrm{~Hz}]$	No
	* FU1-44	UserV/F-voltage 2	Uservolt2	44	Oto 100[\%]		$50[\%]$	No
	* FU1-45	UserV/F-frequency 3	Userfreq3	45	0 to FU1-30		$45.00[\mathrm{~Hz}]$	No
	* FU1-46	UserV/F-voltage 3	Uservolt3	46	Oto 100[\%]		$75[\%]$	No
	* FU1-47	UserV/F-Frequency 4	Userfreq4	47	Oto FUl-30		$60.00[\mathrm{~Hz}]$	No
	* FU1-48	UserV/F-voltage 4	User volt 4	48	Oto 100[\%]		100 [\%]	No
	FU1-49	Inputvoltage adjustment	VAC 440.0V	49	73to 115.0[\%]		100.0[\%]	No
	FU1-50	Output voltage adjustment	Volt control	50	40to 110 [\%]		100.0[\%]	No
	FU1-51	Energy save	Energy save	51	None Manual Auto	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	None	Yes
Note9)	* FU1-52	Energy save\%	Manual save\%	52	Oto 30 [\%]		0 [\%]	Yes
	FU1-60	Electronic thermal selection	ETHselect	60	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	Yes
Note10)	* FU1-61	Electronic thermal level for 1 minute	ETH1 min	61	FU1-62 to 200 [\%]		130[\%]	Yes
	* FU1-62	Electronic thermal level for continuous	ETH cont	62	50 to FU1-61(Maximum 150\%)		120 [\%]	Yes
	* FU1-63	Electronic thermal characteristic selection(motor type)	Motor type	63	Self-cool Forced-cool	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Self-cool	Yes
	FU1-64	Overload warming level	OLlevel	64	30 to 110[\%]		110[\%]	Yes
	FU1-65	Overload warming time	OLtime	65	0 to 30 [sec]		10.0 [sec]	Yes
	FU1-66	Overload trip selection	OLT select	66	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Yes	Yes
	FU1-67	Overload triplevel	OLTlevel	67	30 to 150 [\%]		120 [\%]	Yes
	FU1-68	Overload trip delay time	OLT time	68	0 to $60[\mathrm{sec}]$		60.0 [sec]	Yes
	FU2-69	Input/Output phase loss protection	Trip select	69	00 to 11(Bit set)		00	Yes
	FU1-70	Stall prevention mode selection	Stall prev.	70	000 to 111(Bit set)		000	No
	FU1-71	Stall prevention level	Stall level	71	30to 150[\%]		100[\%]	No
	FU2-72	Accel/Decel change frequency	Acc/DecchF	72	Oto FU1-30		$0.00[\mathrm{~Hz}]$	No
	FU2-73	Reference frequency for Accel and Decel	Acc/Decfreq	73	Maxfreq Delta freq	0	Maxfreq	No
	FU2-74	Accel/Decel time scale	Time scale	74	0.01 [sec] 0.1 [sec] $1[\mathrm{sec}]$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	0.1 [sec]	Yes
	FU1-99	Return code	Notdisplayed	99	Notavailable	1	1	-

[^3] Note8) FU1-41~48 appears by setting the parameter value as (UserV/F) at FU1-33

- FU2 group [FU2]

	Code	Description	Keypad display		Setting range		Factory default	Adj.during run
			LCD	7-segment	LCD	7-segment		
	FU2-00	Jump to desired code\#	Jump code	Notdisplayed	1 to 99	Notavailable	30	Yes
	FU2-01	Previousfaulthistory 1	Lasttrip-1	01	By pressing [PROG] and [$\mathbf{\Delta}$] key, the frequency, current, and operational status at the time of fault can be seen.		None	-
	FU2-02	Previous faulthistory 2	Lasttrip-2	02				
	FU2-03	Previousfaulthistory 3	Lasttrip-3	03				
	FU2-04	Previousfault history 4	Lasttrip-4	04				
	FU2-05	Previousfaulthistory 5	Lasttrip-5	05				
	FU2-06	Erase faulthistory	Erasetrips	06	No	0	No	Yes
	FU2-07	Dwell time	Dwell time	07	0 to 10 [sec]		0.0 [sec]	No
Note11)	* FU2-08	Dwell frequency	Dwell freq	08	FU1-32 to FUl-30		$5.00[\mathrm{~Hz}]$	No
	FU2-10	Frequency jump selection	Jump freq	10	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
Note12)	* FU2-11	Jump frequency 1 low	Jumplo 1	11	Oto FU2-12		$10.00[\mathrm{~Hz}]$	Yes
	* FU2-12	Jumpfrequency 1 high	Jump Hi 1	12	FU2-11 to FU1-30		$15.00[\mathrm{~Hz}]$	Yes
	* FU2-13	Jumpfrequency 2 low	Jumplo 2	13	Oto FU2-14		$20.00[\mathrm{~Hz}]$	Yes
	* FU2-14	Jumpfrequency 2 high	Jump Hi 2	14	FU2-13to FU1-30		$25.00[\mathrm{~Hz}]$	Yes
	* FU2-15	Jumpfrequency 3 low	Jumplo3	15	Oto FU2-16		$30.00[\mathrm{~Hz}]$	Yes
	* FU2-16	Jumpfrequency 3 high	Jump Hi3	16	FU2-15 to FU1-30		$35.00[\mathrm{~Hz}]$	Yes
	FU2-20	Power ON start selection	Power-on run	20	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	0	No	Yes
	FU2-21	Restart after fault reset	RST restart	21	No Yes	0	No	Yes
	FU2-22	Speed search selection	Speed Search	22	0000 to 1111(Bitset)		0000	No
Note13)	* FU2-23	Pgain during speed search	SSP-gain	23	Oto 9999		100	Yes
	* FU2-24	I gain during speed search	SSI-gain	24	Oto 9999		200	Yes
Note14)	* FU2-25	Number of auto restartattempt	Retry number	25	Oto 10		0	Yes
	FU2-26	Delay time before auto restart	Retry Delay	26	0 to $60[\mathrm{sec}]$		1.0 [sec]	Yes
	FU2-40	Rated motor selection	Motor select	40	0.75kW 1.5 kW 2.2kW 3.7kW 5.5kW 7.5kW 11.0kW 15.0kW 18.5kW 22.0kW 30.0 kW	$\begin{gathered} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	4	No
	FU2-41	Number of motor poles	Pole number	41	2 to 12		4	No
	FU2-42	Rated motor slip	Rated-Slip	42	$0 \mathrm{to10}[\mathrm{~Hz}]$		5	No
	FU2-43	Rated motor current(RMS)	Rated-Curr	43	1 to 200 [A]			No
	FU2-44	No load motor current (RMS)	Noload-Curr	44	0.5 to 200 [A]			No
	FU2-45	Motor efficiency	Efficiency	45	70 to 100 [\%]			No
	FU2-46	Load inertia	Inertia rate	46	0to 1		0	No
	FU2-47	Gain for motor speed display	RPM factor	47	1 to 1000[\%]		100[\%]	Yes
	FU2-48	Carier frequency	Carrierfreq	48	0.7 to $15[\mathrm{kHz}]$		$5[\mathrm{kHz}]$	Yes
	FU2-60	Control mode selection	Control mode	60	V/F Slip comp Sensorless	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	V/F	No
Note15)	* FU2-61	Auto tuning	Autotuning	61	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
	* FU2-62	Stator resistance of motor	Rs	62	0 to (depending on FU2-40) [ohm]		7	No
	* FU2-63	Leakage inductance of motor	Lsigma	63	Oto (depending on FU2-40) [mH]		7	No
	* FU2-64	Pre-excitation time	PreExtime	64	0 to 60 [sec]		1	Yes
	* FU2-65	Pgain for sensorless control	SLP-gain	65	Oto 9999		1000	Yes
	* FU2-66	I Igainfor sensorless control	SLI-gain	66	Oto 9999		100	No
	FU2-67	Manual/Auto torque boost selection	Torque boost	67	Manual Auto	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Manual	No
	FU2-68	Torque boost inforward direction	Fwd boost	68	0to 15[\%]		2.0 [\%]	No

Note11) FU2-8 appears by setting the dwell time as (1~10sec) at FU2-7
Note12) FU2-11 appears by setting the parameter value as (Yest) at FU2-10
Note13) FU2-23~24 appears by setting the speed search as (0001~1111) bits at FU2-22

Note14) FU2-26 appears by setting the retry number as (1~10) at FU2-25
Note15) FU2-61~66 appears by setting the parameter value as (Sensorless) at FU2-60

* These hiding codes are only displayed in case of setting those related codes.

Function codes table

FU2 group [FU2]

	Code	Description	Keypad display		Setting range		Factory default	Adj.during run
			LCD	7-segment	LCD	7-segment		
	FU2-69	Torque boost in reverse direction	Revboost	69	Oto 15[\%]		2.0 [\%]	No
	FU2-80	Power on display	PowerOndisp	80	Oto 12		0	Yes
	FU2-81	User display selection	Userdisp	81	Voltage Watt	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Voltage	Yes
	FU2-82	Software version	S/W version	82	Ver $\mathrm{x} . \mathrm{xx}$		-	-
	FU2-90	Parameter display	Para. disp	90	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
Note16)	※ FU2-91	Read parameter	Para. Read	91	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
	* FU2-92	Write parameter	Para.Write	92	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	No
	* FU2-93	Initialize parameters	Para. Init	93	No All Groups DRV FU1 FU2 I/O EXT	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	No	No
	* FU2-94	Parameter write protection	Para.Lock	94			0	Yes
	※ FU2-95	Parameter save	Para. Save	95	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	No	
	FU2-99	Return code	Not displayed	99	Not available	[PROG/ENT] or [SHIFT/ESC]	1	Yes

Note16) FU2-91~95 appears by setting the parameter value as (YES) at FU2-90

* These hiding codes are only displayed in case of setting those related codes.
- Input/Output Group [//O]

Note17) I/O-1~18 appears by setting the parameter value as (V1,V1S,I, V1+I) at DRV-0

* These hiding codes are only displayed in case of setting those related codes.

	Code	Description	Keypad display		Setting range		Factory default	Adj.during run
			LCD	7-segment	LCD	7-segment		
Note18)	* 1/0-19	Waiting time after loss of freq. reference	Timeout	19	0.1 to 120 [sec]		1.0 [sec]	Yes
	(10-19	Multi-function input terminal 'M1' define	(1)		Speed-L	0		
					Speed-M	1		
					Speed-H	2		
					XCEL-L	3		
					XCEL-M	4		
					XCEL-H	5		
					Dc-brake	6		
					2nd Func	7		
					Exchange	8		
					- Reserved-	9		
					Up	10		
					Down	11		
					3-Wire	12		
					Ext Trip-A	13		
					Ext Trip-B	14		
					iTerm Clear	15		
				20	Open-loop	16	Speed-L	Yes
					Main-drive	17	SpeedL	Yes
					Analog hold	18		
					XCEL stop	19		
					PGain2	20		
					- Reserved-	21		
					Interlock1	22		
					Interlock2	23		
					Interlock3	24		
					Interlock4	25		
					Speed-X	26		
					Reset	27		
					- Reserved-	28		
					JOG	29		
					FX	30		
					RX	31		
					Ana Change	32		
					Preexcite	33		
	I/0-21	Multi-function inputterminal 'M2' define	M2 define	21	Sameto	I/O-20	Speed-M	Yes
	1/0-22	Multi-function inputterminal ' M 3 ' define	M3 define	22	Sameto	1/0-20	Speed-H	Yes
	1/0-23	Multi-function inputterminal 'M4' define	M4 define	23	Sameto	I/O-20	Speed-M	Yes
	1/0-24	Multi-function input terminal 'M5' define	M5 define	24	B		Speed-H	Yes
	I/0-25	Multi-function input terminal 'M6' define	M6 define	25	Sameto	I/O-20	Speed-M	Yes
	I/0-26	Multi-function input terminal 'M7' define	M7 define	26	Sameto	1/0-20	Speed-H	Yes
	1/0-27	Multi-function input terminal 'M8' define	M8 define	27	Sameto	I/O-20	Speed-M	Yes
	1/0-28	Terminal input status	Instatus	28	000000000 t	111111111	-	-
	1/0-29	Filtering time constant for multi-function input terminals	Ti Filt Num	29	2 to		15	Yes
	1/0-30	Jog frequency setting	Jog freq	30	$0 \sim$ Maximum	Frequency	$10.00[\mathrm{~Hz}]$	Yes
	1/0-31	Step frequency 4	Stepfreq-4	31	Maximum	requency	$40.00[\mathrm{~Hz}]$	Yes
	1/0-32	Step frequency 5	Stepfreq-5	32	$0 \sim$ Maximum	Frequency	$50.00[\mathrm{~Hz}]$	Yes
	1/0-33	Step frequency 6	Stepfreq-6	33	$0 \sim$ Maximum	Frequency	40.00 [Hz]	Yes
	1/0-34	Step frequency 7	Stepfreq-7	34	$0 \sim$ Maximum	Frequency	$30.00[\mathrm{~Hz}]$	Yes
Note19)	* 1/0-35	Step frequency 8	Stepfreq-8	35	$0 \sim$ Maximum	Frequency	$20.00[\mathrm{~Hz}]$	Yes
	* 1/0-36	Step frequency 9	Step freq-9	36	$0 \sim$ Maximum	Frequency	10.00 [Hz]	Yes
	* 1/0-37	Step frequency 10	Stepfreq-10	37	$0 \sim$ Maximum	Frequency	$20.00[\mathrm{~Hz}]$	Yes
	* 1/0-38	Step frequency 11	Stepfreq-11	38	$0 \sim$ Maximum	Frequency	30.00 [Hz]	Yes
	* 1/0-39	Step frequency 12	Stepfreq-12	39	$0 \sim$ Maximum	Frequency	40.00 [Hz]	Yes
	* I/O-40	Step frequency 13	Stepfreq-13	40	$0 \sim$ Maximum	Frequency	50.00 [Hz]	Yes
	* 1/0-41	Step frequency 14	Stepfreq-14	41	$0 \sim$ Maximum	Frequency	$40.00[\mathrm{~Hz}]$	Yes
	* 1/0-42	Step frequency 15	Stepfreq-15	42	$0 \sim$ Maximum	Frequency	$30.00[\mathrm{~Hz}]$	Yes
	I/0-50	Acceleration time 1 (for step frequency)	Acctime-1	50	0to 600	[sec]	20.0 [sec]	Yes

[^4]
Function codes table

■ Input/Output group [//O]

	Code	Description	Keypad display		Setting range		Factory default	Adj.during run
			LCD	7-segment	LCD	7-segment		
	1/0-51	Deceleration time 1 (for step frequency)	Dectime-1	51	0 to 6000 [sec]		20.0 [sec]	Yes
	1/0-52	Acceleration time 2	Acc time-2	52	0 to 6000 [sec]		30.0 [sec]	Yes
	I/0-53	Deceleration time 2	Dectime-2	53	0 to 6000 [sec]		30.0 [sec]	Yes
	1/0-54	Acceleration time 3	Acc time-3	54	0 to 6000 [sec]		40.0 [sec]	Yes
	1/0-55	Deceleration time 3	Dectime-3	55	0 to 6000 [sec]		40.0 [sec]	Yes
	1/0-56	Acceleration time 4	Acc time-4	56	0 to 6000 [sec]		50.0 [sec]	Yes
	1/0-57	Deceleration time 4	Dectime-4	57	0 to 6000 [sec]		50.0 [sec]	Yes
	1/0-58	Acceleration time 5	Acc time-5	58	0 to 6000 [sec]		40.0 [sec]	Yes
	1/0-59	Deceleration time 5	Dectime-5	59	0 to 6000 [sec]		40.0 [sec]	Yes
	1/0-60	Acceleration time6	Acc time-6	60	0 to 6000 [sec]		30.0 [sec]	Yes
	1/0-61	Deceleration time6	Dectime-6	61	0 to 6000 [sec]		30.0 [sec]	Yes
	1/0-62	Acceleration time 7	Acc time-7	62	0 to 6000 [sec]		20.0 [sec]	Yes
	1/0-63	Deceleration time 7	Dectime-7	63	0 to 6000 [sec]		20.0 [sec]	Yes
	1/0-70	AM1 (analog meter) output selection	AM1 mode	70	Frequency Current Voltage DC linkVtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Frequency	Yes
	I/0-71	AM1 output adjustment	AM1adjust	71	10 to 200 [\%]		100 [\%]	Yes
	1/0-72	AM2 (analog meter) output selection	AM2 mode	72	Frequency Current Voltage DC linkVtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Frequency	Yes
	1/0-73	AM2 output adjustment	AM2 adjust	73	10 to 200 [\%]		100 [\%]	Yes
Note20)	* I/0-74	Frequency detection level	FDT freq	74	0toFU1-30		$30.00[\mathrm{~Hz}]$	Yes
	* 1/0-75	Frequency detection bandwidth	FDT band	75	0toFU1-30		$10.00[\mathrm{~Hz}]$	Yes
	1/0-76	Multi-function auxiliary contact output define(Aux terminal)	Auxmode 1	76	FDT-1 FDT-2 FDT-3 FDT-4 FDT-5 OL IOL Stall OV LV OH LostCommand Run Stop Steady INV line COMM line Ssearch Step pulse Seqpulse Ready MMC	$\begin{gathered} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ 19 \\ 20 \\ 23 \end{gathered}$	None	Yes
	1/0-77	Multi-function auxiliary contact output define	Auxmode 2	45	Sameas	//0-76	010	Yes
	1/0-78	Multi-function auxiliary contact output define	Aux mode 3	45	Same as	//0-76	010	Yes
	1/0-79	Multi-function auxiliary contact output define	Auxmode 4	45	Sameas	1/0-76	010	Yes
	1/0-80	Fault output relay setting (30A, 30B, 30C)	Relay mode	45	000 to 11	1 (Bitset)	010	Yes

[^5]
Input/Output group [I/O]

	Code	Description	Keypad	display	Settin	range	Factory default	Adj.during
	Code	Description	LCD	7-segment	LCD	7-segment	Factory default	run
	1/0-81	Terminal output status	Out status	16	00000000	11111111	00000000	-
	1/0-90	Inverter number	Inv No.	90			1	Yes
	I/0-91	Baud rate	Baud rate	91	1200 bps 2400 bps 4800 bps 9600 bps 19200 bps	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	9600 bps	Yes
Note21)	* I/0-92	Operating method at loss of freq. reference	COMLostCmd	92	None FreeRun Stop	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	None	No
	* 1/0-93	Waiting time after loss of freq. reference	COMTimeOut	93	0.1 to	0 [sec]	1.0 [sec]	Yes
	1/0-94	A or B contact	In No/Nc set	94	00000000000	11111111111	00000000000	No
	1/0-95	Input time	In CheckTime	95			1 [msec]	Yes
	1/0-96		OHTrip sel	96	000 to	11 [bit]	111 [bit]	Yes
	1/0-97	Return code	Not Displayed	99			1	Yes

Note21) I/O-92~93 appears by setting the parameter value as (Int485) at DRV-04

* These hiding codes are only displayed in case of setting those related codes

- Application group [APP]

[^6]
Function codes table

Application group [APP]

Note23) APP-40~73 appears by setting the parameter value as (MMC) at APP-01.
※ These hiding codes are only displayed in case of setting those related codes.

Peripheral devices

Voltage	Motor(kW)	Invertertype	MCCB or ELCB	MC(LG)	Cable(mini)		
					R, S, T	u,v,w	Ground
200V class	0.75	SV055iP5-2	ABS33b, EBS33b	GMC-12	2	2	3.5
	1.5	SV055iP5-2	ABS33b,EBS33b	GMC-12	2	2	3.5
	2.2	SV055iP5-2	ABS33b, EBS33b	GMC-18	2	2	3.5
	3.7	SV055iP5-2	ABS33b,EBS33b	GMC-22	3.5	3.5	3.5
	5.5	SV055iP5-2	ABS53b, EBS53	GMC-22	5.5	5.5	5.5
	7.5	SV075iP5-2	ABS103b,EBS103	GMC-32	8	8	5.5
	11	SV110iP5-2	ABS103b,EBS103	GMC-50	14	14	14
	15	SV150iP5-2	ABS203b,EESb03	GMC-65	22	22	14
	18.5	SV185iP5-2	ABS203b,EBS203	GMC-85	30	30	22
	22	SV220iP5-2	ABS203b,EBS203	GMC-100	38	30	22
	30	SV300iP5-2	ABS203b,EBS203	GMC-150	38	30	22
400 V class	0.75	SV055iP5-4	ABS33b, EBS33b	GMC-12	2	2	2
	1.5	SV055iP5-4	ABS33b, EBS33b	GMC-12	2	2	2
	2.2	SV055iP5-4	ABS33b, EBS33b	GMC-22	2	2	2
	3.7	SV055iP5-4	ABS33b, EBS33b	GMC-22	2	2	2
	5.5	SV055iP5-4	ABS33b, EBS33b	GMC-22	3.5	2	3.5
	7.5	SV075iP5-4	ABS33b,EBS33b	GMC-22	3.5	3.5	3.5
	11	SV110iP5-4	ABS53b,EBS53	GMC-22	5.5	5.5	8
	15	SV150iP5-4	ABS103b,EBS103	GMC-25	14	8	8
	18.5	SV185iP5-4	ABS103b,EBS103	GMC-40	14	8	14
	22	SV220iP5-4	ABS103b,EBS103	GMC-50	22	14	14
	30	SV300iP5-4	ABS203b,EBS203	GMC-65	22	22	14

Voltage	Motor(kW)	Inverter type	ACinputfuse	ACreactor	DCreactor
200V class	0.75	SV055iP5-2	10A	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	$7.00 \mathrm{mH}, 5.4 \mathrm{~A}$
	1.5	SV055iP5-2	15A	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	$4.05 \mathrm{mH}, 9.2 \mathrm{~A}$
	2.2	SV055iP5-2	25A	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	$2.92 \mathrm{mH}, 13 \mathrm{~A}$
	3.7	SV055iP5-2	40A	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	$1.98 \mathrm{mH}, 19 \mathrm{~A}$
	5.5	SV055iP5-2	40A	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	$1.37 \mathrm{mH}, 29 \mathrm{~A}$
	7.5	SV075iP5-2	50A	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	$1.05 \mathrm{mH}, 38 \mathrm{~A}$
	11	SV110iP5-2	70A	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	$0.74 \mathrm{mH}, 56 \mathrm{~A}$
	15	SV150iP5-2	100 A	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	$0.57 \mathrm{mH}, 71 \mathrm{~A}$
	18.5	SV185iP5-2	100A	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	$0.49 \mathrm{mH}, 91 \mathrm{~A}$
	22	SV220iP5-2	125A	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	0.42mH, 107A
	30	SV300iP5-2	190A	$0.07 \mathrm{mH}, 160 \mathrm{~A}$	$0.34 \mathrm{mH}, 152 \mathrm{~A}$
400 V class	0.75	SV055iP5-4	6A	$8.63 \mathrm{mH}, 2.8 \mathrm{~A}$	$28.62 \mathrm{mH}, 2.7 \mathrm{~A}$
	1.5	SV055iP5-4	10A	$4.81 \mathrm{mH}, 4.8 \mathrm{~A}$	$16.14 \mathrm{mH}, 4.6 \mathrm{~A}$
	2.2	SV055iP5-4	10A	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	$11.66 \mathrm{mH}, 7.1 \mathrm{~A}$
	3.7	SV055iP5-4	20A	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	$7.83 \mathrm{mH}, 10 \mathrm{~A}$
	5.5	SV055iP5-4	20A	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	$5.34 \mathrm{mH}, 14 \mathrm{~A}$
	7.5	SV075iP5-4	30A	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	$4.04 \mathrm{mH}, 19 \mathrm{~A}$
	11	SV110iP5-4	35A	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	$2.76 \mathrm{mH}, 29 \mathrm{~A}$
	15	SV150iP5-4	45A	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	$2.18 \mathrm{mH}, 36 \mathrm{~A}$
	18.5	SV185iP5-4	60A	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	$1.79 \mathrm{mH}, 48 \mathrm{~A}$
	22	SV220iP5-4	70A	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	$1.54 \mathrm{mH}, 55 \mathrm{~A}$
	30	SV300iP5-4	90A	$0.287 \mathrm{mH}, 80 \mathrm{~A}$	$1.191 \mathrm{mH}, 76 \mathrm{~A}$

[^7]
Dimension

■ SV055iP5-2/4
(200V/400V)

Inverter type	W1	W2	W3	H1	H2	D1
SV055iP5-2/4	150	130	6	284	269	156.5

■ SV075iP5-2/4, SV110iP5-2/4
(200V/400V)

Invertertype	W1	W2	W3	H1	H2	D1
SV075iP5-2/4	200	180	6	284	269	182
SV0110iP5-2/4	200	180	6	284	269	182

■ SV150iP5-2/4, SV185iP5-2/4
(200V/400V)

Invertertype	W1	W2	W3	H1	H2	D1
SV150iP5-2/4	250	230	9	385	370	201
SV185iP5-2/4	250	230	9	385	370	201

■ SV220iP5-2/4, SV300iP5-2/4
(200V/400V)

Invertertype	W1	W2	W3	H1	H2	D1
SV220iP5-2/4	304	284	9	460	445	234
SV300iP5-2/4	304	284	9	460	445	234

Voltage	Inverter capacity	Braking unit
200V	$5.5 \sim 15 \mathrm{~kW}$	SV150DBU-2
class	$18.5 \sim 22 \mathrm{~kW}$ 400V class	SV220DBU-2
	$18.5 \sim 15 \mathrm{~kW}$	SV037DBH-2
	SV150DBU-4	

Term	nal name	Description
	P	Connection terminal of inverter terminal P2 or P
	N	Connection terminal of inverter terminal N
	B1	Connection terminal of braking unit B1
	B2	Connection terminal of braking unit B2
	G	Ground terminal
Below	OH	OH Trip output terminal (open collector output: $20 \mathrm{~mA}, 27 \mathrm{VDC}$)
22kW	CM	Common terminal of OH terminal
$\begin{aligned} & \text { Below } \\ & \text { 30kW } \end{aligned}$	IN+	Continuous operation connection terminal (For SLAVEMODE)
	IN-	Continuous operation connection terminal (For SLAVEMODE)
	OUT+	Continuous operation connection terminal (For SLAVEMODE)
	OUT-	Continuous operation connection terminal (For SLAVEMODE)
	30A,B,C	The fault signal of braking units' protection function is released via these terminals

■ Wiring

Single use of braking unit

■ Below 22kW braking unit

■ Over 30kW braking unit

■ Stand-alone type braking resistor

As our iP5 series does not provide the Braking and the braking resistor as a built-in option the Stand-alone type braking unit and resistor should be used solely. The basic use rate(\%ED) of below table shown is 5% and in case of 10% use rate, the rated watt of standalone type resistor should be doubled.

Voltage	Inverter capacity (kW)	Userate (\%ED/Continuous operation)	100\% Braking		150\% Braking	
			OHM	WATT	OHM	WATT
200V class	5.5	5\%/15sec.	30	700	20	800
	7.5	5\%/15sec.	20	1,000	15	1,200
	11	5\%/15sec.	15	1,400	10	2,400
	15	5\%/15sec.	11	2,000	8	2,400
	18.5	5\%/15sec.	9	2,400	5	3,600
	22	5\%/15sec.	8	2,800	5	3,600
	30	5\%/15sec.	3	5,000	-	-
400V class	5.5	5\%/15sec.	120	700	85	1,000
	7.5	5\%/15sec.	90	1,000	60	1,200
	11	5\%/15sec.	60	1,400	40	2,000
	15	$5 \% / 5 \mathrm{sec}$.	45	2,000	30	2,400
	18.5	5\%/15sec.	35	2,400	20	3,600
	22	5\%/15sec.	30	2,800	20	3,600
	30	5\%/15sec.	12	5,000	-	-

Basic configuration

Proper peripheral devices must be selected and correct connections made to ensure proper operation. An incorrectly applied or installed inverter can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding.

Leader in Electrics \& Automation

- For your safety, please read user's manual thoroughly before operating.
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance. Do not disassemble or repair by yourself!
- Any maintenance and inspection shall be performed by the personnel having expertise concerned.

LG Industrial Systems

www.lgis.com

HEAD OFFICE

LG TWIN TOWERS, 20 Yoido-dong, Youngdungpo-gu,
Seoul, 150-721, Korea
Tel. (82-2)3777-4643~4649
Fax. (82-2)3777-4879, 780-4885
http://www.Igis.com
\square
Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

Global Network

- Dalian LG Industrial Systems Co., Ltd China

Address: No. 15 Liaohexi 3 Road, economic and technical
development zone, Dalian, China
Tel: 86-411-731-8210 Fax: 86-411-730-7560 e-mail: youngeel@Igis.com

- LG-VINA Industrial Systems Co., Ltd Vietnam

Address: LGIS VINA Congty che tao may dien Viet-Hung Dong Anh Hanoi, Vietnam
Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: srjo@hn.vnn.vn

- LG Industrial Trading (Shanghai) Co., Ltd China

Address: Room 1705-1707, 17th Floor Xinda Commerical Building No 318,
Xian Xia Road Shanahai, China
Tel: 86-21-6252-4291 Fax:86-21-6278-4372 e-mail: hgseo@Igis.com

- LG Industrial Systems Beijing Office China

Address: Room 303, 3F North B/D, EAS 21 XIAO YUN ROAD,
Dong San Huan Bei Road, Chao Yang District, Beijing, China
Tel: 86-10-6462-3259/4 Fax: 86-10-6462-3236 e-mail: sclim@mx.cei.gov.cn

- LG Industrial Systems Shanghai Office China

Address: Room 1705-1707, 17th Floor Xinda Commerical Building
No 318, Xian Xia Road Shanahai, China
Tel: 86-21-6278-4370 Fax: 86-21-6278-4301 e-mail: sdhwang@Igis.com

- LG Industrial Systems Guangzhou Office China

Address: Room 303, 3F, Zheng Sheng Building, No 5-6, Tian He
Bei Road, Guangzhou, China
Tel: 86-20-8755-3410 Fax: 86-20-8755-3408
e-mail: Igisgz@public1.guangzhou.gd.cn

- LG Industrial Systems New Jersey Office USA

Address: 1000 Sylvan Avenue, Englewood Cliffs, New Jersey 07632 USA
Tel: 1-201-816-2985 Fax: 1-201-816-2343 e-mail: younsupl@Igisusa.com

- LG Industrial Systems Tokyo Office Japan

Address: 16F, Higashi-Kan, Akasaka Twin Towers 17-22, 2-chome,
Akasaka, Minato-ku Tokyo 107-0052, Japan
Tel: 81-3-3582-9128 Fax: 81-3-3582-0065 e-mail: snbaek@igis.com

[^0]: Note1) The Flying-Start function shows its normal operation only in the case that the directions of motor rotation and command are identical.
 Note2) This function is not available in the sensorless mode

[^1]: Note) The multi-function input terminals; M1~M4 and M6~M8, excluding M5 (BX), are modifiable those function into others.

[^2]: Note4) FU1-4~5 appears by setting the parameter value as (S-curve) at FU1-2

[^3]: Note5) FU1-21~22 appears by setting the parameter value as (DC-start) at FU1-20
 Note6) FU1-24~27 appears by setting the parameter value as (DC-break) at FU1-23
 Note7) FU1-34~35 appears by setting the parameter value as (Yes) at FU1-33
 Note9) FU1-52 appears by setting the parameter value as (Manual) at FU1-51
 Note10) FU1-61 appears by setting the parameter value as (Yes) at FU1-60

 * These hiding codes are only displayed in case of setting those related codes.

[^4]: Note18) //O-19 appear by setting the parameter value as (V1, V1S,I, V1+I) at DRV-0
 Note19) I/O-35~42 appears by setting one of parameter values, among $/ / O-20 \sim 27$, as (SPD_X).

 * These hiding codes are only displayed in case of setting those related codes.

[^5]: Note20) I/O-74~75 appears by setting the parameter values, among I/O-76~79, as (FDT-1~FDT5).

 * These hiding codes are only displayed in case of setting those related codes

[^6]: Note22) APP-03~17 appears by setting the parameter value as (Yes) at APP-02

 * These hiding codes are only displayed in case of setting those related codes.

[^7]: Note) Correct capacity fuses and reactors must be selected for safe use.

